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Abstract

Background: A growing body of research has examined relationships between neighborhood 

characteristics and exposure to air toxics in the United States. However, a limited number of 

studies have addressed neighborhood isolation, a measure of spatial segregation. We investigated 

the spatial distribution of carcinogenic air toxics in the St. Louis metropolitan area and tested the 

hypothesis that neighborhood isolation and sociodemographic characteristics are associated with 

exposure to carcinogenic air toxics.

Methods: We obtained lifetime air toxics cancer risk data from the United States Environmental 

Protection Agency’s National Air Toxic Assessment and sociodemographic data from the 

American Community Survey. We used geographic information systems to identify statistically 

significant clusters of census tracts with elevated all-site cancer risk due to air toxics in the St. 

Louis metropolitan area. Relative Risks (RR) were estimated for the association between 

neighborhood characteristics and air toxic hot spots. Using a local spatial isolation index to 
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evaluate residential segregation, we also evaluated the association between neighborhood racial 

and economic isolation and air toxic hot spots.

Results: Approximately 14% (85 of the 615) of census tracts had elevated cancer risk due to air 

toxics (p < 0.01). These air toxic hot spots were independently associated with neighborhoods 

with high levels of poverty and unemployment and low levels of education. Census tracts with the 

highest levels of both racial isolation of Blacks and economic isolation of poverty were more 

likely to be located in air toxic hotspots than those with low combined racial and economic 

isolation (RR = 5.34; 95% CI = 3.10–9.22).

Conclusions: These findings provide strong evidence of unequal distribution of carcinogenic air 

toxics in the St. Louis metropolitan area. Study results may be used to inform public health efforts 

to eliminate sociodemographic inequalities in exposure to air pollutants.
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BACKGROUND

Hazardous air pollutants, also referred to as “air toxics,” are chemical compounds that are 

associated with adverse health outcomes [1, 2]. In the United States (US), there have been 

well-documented disparities in exposure to air toxics, such as benzene, particulate matter, 

and other pollutants known to, or suspected to, cause cancer or other non-cancer adverse 

health effects, such as respiratory, cardiovascular, and neurological effects [3–6]. These 

disparities have been a longstanding focus of the environmental justice movement, with 

socially disadvantaged communities experiencing disproportionately higher exposures [7].

Previous US studies have examined associations between neighborhood characteristics, such 

as poverty, educational attainment, race and ethnicity, and exposure to carcinogenic air 

toxics [8–15]. For example, state-wide studies of cancer risk in Maryland and South 

Carolina and region-wide studies of cancer risk in Houston, TX Cancer Alley, LA, and 

Memphis, TN have reported that census tracts with higher percentages of minority residents 

experience greater cancer risk (from all air toxics present in a tract) than census tracts with 

lower percentages of minorities [8, 10, 11, 13, 14]. The current literature on associations 

between racial and ethnic composition and exposure to hazardous air pollutants in the 

United States, however, has been limited by crude measures of residential segregation. In 

general, these studies have utilized less precise measures (e.g. percent African Americans in 

the neighborhood) that capture segregation in a particular area without regard for the levels 

of segregation in the surrounding neighborhoods. As a result, these measures fail to account 

for contextual factors throughout the entire study area, leading to measurement errors that 

may influence observed associations with exposure to ambient air pollution.

US studies of segregation and health have employed either a global or local approach to 

evaluating residential segregation [16]. Based on an extensive and in-depth literature review 

on various segregation measures, Massey and Denton classified segregation measures into 

five dimensions: (1) evenness (i.e., the differential distribution of population groups); (2) 
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exposure or, its counterpart, isolation (i.e., the potential interaction of population groups); 

(3) concentration, similar to the concept of density (i.e., the distributional intensity of 

population groups); (4) centralization (i.e., the dispersion of population groups with respect 

to the city center); and (5) clustering (i.e., the degree of spatial separation or proximity of 

population groups) [17]. Reardon and O’Sullivan [18] and Johnston et. al [19], however, 

later concluded that evenness and isolation were the two distinct conceptual dimensions of 

segregation. In US studies of segregation and exposure to ambient air pollution, for example, 

evenness may be used to indicate how segregation modifies an association between an 

exposure and health outcome across metropolitan areas, while isolation may be used to 

indicate how minority residents within an area experiencing residential segregation [9, 20]. 

In a literature review examining the relationships between segregation and health, Kramer 

and Hogue suggested that, compared with the evenness dimension, the isolation dimension 

may be the stronger measure for evaluating unhealthy environments and exposures [16]. 

When capturing the isolation dimension, the P* index of isolation [21] has been widely used 

in studies of residential racial segregation [17, 18]. While the P* index has been widely used 

for studying the inter-city or inter-MSA (Metropolitan Statistical Area) analysis, Oka and 

Wong recently modified the P* index and introduced the local spatial isolation index (SI[i]) 

for studying intra-MSA variations in segregation at the neighborhood level [22].

In this study, we conducted a spatial analysis of cancer risk in the St. Louis, MO–IL MSA 

(hereafter referred to as the St. Louis metropolitan area) because few studies, to date, have 

examined local spatial isolation as a dimension of segregation in relation to exposure to air 

toxics. Most of the previous work on inequalities in exposure to air toxics in the US has 

focused on locations in the Southern US, a region with the highest percentages of poverty, 

rural residents, and African American residents in the country. Few studies of air toxic 

cancer risks have focused exclusively on the American Midwest as an area of study.

The St. Louis metropolitan area, with an estimated population of 2.8 million residents, is one 

of the largest metropolitan areas in the American Midwest, and the 21st largest metropolitan 

area in the United States [23]. The area includes the independent city of St. Louis and 14 

surrounding counties in the states of Missouri (Franklin, Jefferson, Lincoln, St. Charles, St. 

Louis, Warren, and Washington) and Illinois (Bond, Calhoun, Clinton, Jersey, Macoupin, 

Madison, Monroe, and St. Clair) [24]. The Mississippi River separates the two states, and 

approximately 75% of metropolitan area residents reside in Missouri [23]. In 2010, 

approximately 76% of St. Louis metropolitan area residents identified as white and 18% 

identified as African American, with the remaining identifying as Asian (2%), American 

Indian or Pacific Islander (1%), or some other race. Approximately 3% of St. Louis area 

residents were Hispanic or Latino of any race. St. Louis is one of the most racially 

segregated metropolitan area in the United States [25]. African American residents, for 

example, are mostly concentrated in neighborhoods in northern St. Louis City, northern St. 

Louis County, and in the city of East St. Louis in Illinois.

The St. Louis metropolitan area has well documented racial and socioeconomic disparities in 

health outcomes and quality of life [26]. However, the distribution of potential 

environmental health hazards, such as air toxics, are less well studied. Using local spatial 

isolation to evaluate residential segregation, we investigated relationships between the 
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isolation and sociodemographic characteristics of St. Louis area neighborhoods and cancer 

risk from air toxics. Understanding the relationships between neighborhood characteristics 

and exposure to air toxics is critical to informing the design and evaluation of effective 

public health interventions.

METHODS

Cancer Risk from Air Toxics

We obtained lifetime air toxics cancer risk data from the United States Environmental 

Protection Agency’s National Air Toxic Assessment (NATA). NATA is EPA’s nationwide 

assessment of air toxics known to, or suspected to, cause cancer or non-cancer adverse 

health effects[1]. The assessment includes four steps: (1) compiling a national emissions 

inventory of air toxics emissions from outdoor sources; (2) estimating ambient 

concentrations of air toxics across the United States; (3) estimating population exposures 

across the United States; and (4) characterizing potential public health risk due to inhalation 

of air toxics including both cancer and non-cancer effects. NATA determines air toxics 

concentrations and cancer risk estimates at the census tract level [1]. Cancer risk estimates 

assume a person breathes these emissions each year over a lifetime (or approximately 70 

years). Cancer risk is therefore defined as the probability of contracting cancer over the 

course of a lifetime [1].

NATA has provided an estimation of lifetime all-site cancer risk from inhalation of air toxics 

since 1996 [1]. Cancer risks from eight different emission sources were included in the 

assessment, including (a) pollutants directly emitted into the atmosphere (on-road mobile 

sources (e.g. passenger and commercial trucks, vehicles, and buses), non-road mobile 

sources (e.g. aircraft, heavy equipment, locomotives), point sources (major stationary 

sources), non-point sources (area and other smaller stationary sources), biogenic sources 

(from trees, plants and soil microbes), and fire sources), (b) pollutants that form in the air as 

a result of atmosphere transformation of precursor chemicals (secondary sources), and (c) 

background emissions (pollutant concentrations without a specific source) [27, 28]. Total 

cancer risk from air toxics was determined as the sum of the risks of the eight 

aforementioned emissions sources. The current study utilized NATA data from 2011 to 

evaluate cancer risk data for each census tract in the St. Louis metropolitan area. The 2011 

NATA included emissions, ambient concentrations, and exposure estimates for 180 Clean 

Air Act air toxics [1].

Sociodemographic and Isolation Characteristics

Census tract-level sociodemographic data were obtained from the US Census Bureau’s 

American Community Survey (ACS) 2010–2014 Five-Year Estimates.[29] 

Sociodemographic variables about race, ethnicity, and socioeconomic status were selected 

based on previous research.[6, 8–11, 14, 30–34] These variables included: (a) percent of the 

population that is non-white, (b) percent of the population that is African American, (c) 

percent of the population that is Hispanic, d) percent of the population that is without a high 

school education, (e) per capita income, (f) median household income, (g) percent of the 

population in poverty, (h) percent of the population that is unemployed.
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We also included measures of the racial and socioeconomic isolation to capture spatial 

patterns of residential segregation within the St. Louis metropolitan area. These measures of 

residential segregation, developed by Oka and Wong, [22] account for the spatial 

relationships between census tracts to reflect residential segregation at the neighborhood 

scale. Instead of using the percentages of populations belonging to a particular group (e.g. 

percentage black and percentage poverty) as an indicator of residential segregation, Oka and 

Wong proposed that such measures should take into account how populations are spread 

across surrounding neighborhoods [35]. The isolation measures detail local patterns of 

residential segregation across a study area using the concept of “composite population 

counts” [36]. The composite population count includes the population of neighboring units 

in evaluating the population of a reference unit. For example, the formula for calculating a 

local black isolation index is as follows:

Black isolation =
cbi
B ×

cbi
cti

where cbi is the composite population count of black population in census tract i, B is the 

population count of black population for the entire study area (i.e., St. Louis metropolitan 

area), and cti is the composite population of the total population in census tract i. This 

probabilistic approach to evaluating segregation is useful for considering the degree of 

isolation for a specific group. Isolation measures may be interpreted as the probability of a 

particular population group member meeting another member of the same group within a 

neighborhood (i.e., census tract). Therefore, the higher the probability, the greater the 

proportion of that neighborhood’s (or census tract’s) population who are members of the 

same group. In the current study, we used Oka and Wong’s black isolation and poverty 

isolation measures as the indicator of spatial separation from other racial/ethnic populations 

and from non-poverty populations, respectively. These measures were selected because of 

St. Louis metropolitan area’s well-documented racial (Black/White) and economic health 

inequalities [26].

Cancer risk estimates were linked to census tract-level sociodemographic and isolation 

measures using the US Federal Information Processing Standards (FIPS) code. Our final 

analytical dataset included cancer risk estimates, sociodemographic data, and isolation data 

for a total of 615 St. Louis metropolitan area census tracts. Figures 1–3 display the spatial 

distributions of cancer risk and sociodemographic and isolation characteristics across all St. 

Louis census tracts by quartile.

Spatial Clustering

Moran’s I test confirmed the presence of spatial autocorrelation of cancer risk [37, 38]. The 

Getis–Ord Gi* statistic was then used to identify cancer risk clustering patterns across all 

census tracts in St. Louis metropolitan area by generating a z-score for each census tract. 

Briefly, each census tract is examined within the context of its neighboring census tracts. 

The cancer risk for a census tract and its neighboring census tracts is compared 

proportionally to the cancer risk values within the entire study area. To be considered a 

statistically significant hot spot, a census tract with a high cancer risk must be surrounded by 
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other census tracts with high cancer risk as well. The Gi* statistic returned for each census 

tract is a z-score (standardized value) to which a p-value is associated. The null hypothesis 

for this statistic is that cancer risks in the St. Louis metropolitan area exhibit a random 

spatial pattern. When the p-values are statistically significant, the assumption is that the 

spatial distribution of cancer risks is not random. We used the Getis-Ord Gi* statistic within 

ArcGIS with alphas of 0.05 (95% confidence) and 0.01 (99% confidence) significance to 

identify cancer risk hotspots. We used a threshold of z-score ≥ 2.58 to define a 99% hotspot 

and a threshold of z-score ≥ 1.96 to define a 95% hotspot. Coldspots were defined using 

thresholds of z-score < −2.58 (99% coldspot) and z-score < −1.96 (95% coldspots).

Data Analyses

Relative Risk—Association between neighborhood characteristics and cancer risk were 

estimated as relative risks with 95% confidence intervals from log-binomial regression 

models. For the purposes of these analyses, census tracts were dichotomized into air toxic 

hotspots and non-hotspots. For each sociodemographic and isolation characteristic, census 

tracts were categorized into four sequential quartile groups, with the first group (Q1) 

representing census tracts with values up to the 25th percentile, the second group (Q2) 

representing census tracts with values between the 25th percentile and the median, the third 

group (Q3) representing census tracts with values between the median and the 75th 

percentile, and the fourth group (Q4) representing census tracts with values above the 75th 

percentile. To compare cancer risk, relative risk (RR) and 95% confidence interval (CI) were 

estimated as the ratio of the proportion of high cancer risk tracts in each quartile group, with 

each of the three highest groups compared with the first quartile (reference group).

We examined hotspot risks associated with combined racial and economic isolation by 

creating four groups of census tracts based on their racial and economic composition: (High 

racial and high poverty isolation, high racial and low poverty isolation, low racial and high 

poverty isolation, low racial and low poverty isolation). “High racial isolation” census tracts 

were defined as census tracts with racial isolation values above the 75th percentile, while 

“low racial isolation” census tracts were defined as census tracts with racial isolation values 

at or below the 75th percentile. Similarly, “high economic isolation” census tracts were 

defined as census tracts with economic isolation values above the 75th percentile and “low 

economic isolation” census tracts were defined as census tracts with economic isolation 

values at or below the 75th percentile.

All spatial analyses were conducted in ArcGIS version 10.5 (ESRI, Redlands, CA, USA), 

and statistical analyses were conducted in SAS version 9.4 (Cary, NC, USA).

RESULTS

Lifetime Cancer Risk from Air Toxics

The distribution of cancer risk estimates in the St. Louis metropolitan area, Missouri, 

Illinois, and the US are displayed in Table 1. The median lifetime total air toxics cancer risk 

for the St. Louis metropolitan area was higher than the median cancer risks for Missouri, 

Illinois, and the United States as a whole.
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Table 2 presents the distribution of cancer risks by emission sources in the St. Louis 

metropolitan area. Secondary sources (pollutants formed in the atmosphere from precursor 

chemicals) were the largest contributors to cancer risk. Of the direct emissions sources (on-

road, non-road, point, non-point, biogenics, and fire), on-road sources (vehicles used on 

roads and highways) contributed the most cancer risk (Table 2). Descriptive statistics for 

neighborhood isolation and sociodemographic characteristics are summarized in Table 3.

Air Toxic Hotspots

As shown in Figure 4, spatial autocorrelation analyses identified carcinogenic air toxic 

hotspots and coldspots in the St. Louis metropolitan area. Hotspot census tracts with 95% 

(light red) and 99% (dark red) significance are presented in Figure 5. Approximately 25% 

(154 of the 615) of census tracts were hotspots at the 95% confidence level, and 14% (85 of 

the 615) of census tracts were hotspots at the 99% confidence level. There were six distinct 

hotspots at the 99% confidence level; four of these hotspot area included intersections of 

major interstate highways (Figure 5).

Relative Risk

Table 4 displays the percentage of census tracts in hotspot areas and the Relative Risk (RR) 

by quartile for each sociodemographic measure. There was a significant association between 

air toxic hotspots and each sociodemographic measure except Hispanic race. For example, 

census tracts with the highest proportion of non-white residents (Q4) were 18.5 times more 

likely to be identified as air toxic hot spots (at the 99% significance level) than census tract 

with the lowest proportion of non-whites (Q1). Relative Risks were of similar magnitude for 

the African American (Hotspot-99% Q4 versus Q1 RR = 17.4) and Poverty (Hotspot-99% 

Q4 versus Q1 RR = 12.0) variables. RRs for Q4 versus Q1 were also significant for the 

racial and economic isolation variables. We observed significant inverse associations 

between both per capita income and median household income and air toxic hotspots (Table 

4).

Relative risks for the combined racial and economic isolation measure are presented in Table 

5. Census tracts with highest proportion of both racial and economic isolation were five 

times more likely to be located in air toxic hotspots than those with lowest proportions of 

racial and economic isolation.

DISCUSSION

This study examined associations between neighborhood isolation and sociodemographic 

characteristics and cancer risk from air toxics in the St. Louis metropolitan area. We found 

that census tract–level measures of poverty, undereducation, and unemployment were 

associated with air toxic hotspots, while factors such as per capita income and median 

household income were inversely associated with air toxic hotspots. In the present study, we 

used local spatial isolation measures to examine relationships between neighborhood 

segregation and cancer risk from air toxics. We observed that air toxic hotspots were 

associated with census tracts with high levels of combined racial and economic isolation.
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Multiple studies have documented sociodemographic disparities in exposure to air pollution 

[8–15, 31]. Given the growing evidence for associations between environmental exposures 

and cancer risk,[39–42] these disparities in exposure to air toxics may confer a greater risk 

for cancer in low socioeconomic status populations. Researchers have long theorized that 

disparities in exposure to ambient environmental hazards may result in racial disparities in 

health outcomes,[43–46] including the hypothesis that residential segregation leads to 

differential exposure to air pollutants. In the US, a history of discriminatory housing policies 

and unequal access to affordable loans and mortgages has made it difficult for Blacks and 

other minorities to move into predominantly white communities.[47] Although overall 

segregation has decreased, low-income Black and minorities are more likely to be spatially 

isolated.[48] Kramer and Hogue proposed four hypothesized pathways between segregation 

and health: (1) segregation begetting individual socioeconomic status; (2) segregation 

perpetuating unhealthy neighborhood environments; (3) segregation modifying social 

capital; and (4) segregation modifying individual risk behaviors or exposure to stress.[16] 

With regard to the relationship between segregation and exposure to air toxics, it is unclear 

how spatial forms of segregation disproportionately expose certain population groups. 

Segregation may lead to the unequal distribution of socioeconomic resources in a 

metropolitan area, which may lead to the economic and environmental disenfranchisement 

of predominantly low-income, minority comminutes, and limited community involvement in 

land use planning. The results of segregation are neighborhoods with low social capital, few 

community resources, and low property values which may, in turn, attract more low-income 

and minority residents, thus perpetuating the cycle of segregation and exposure to unhealthy 

air toxics.[31, 49, 50] In our study, cancer hotspot risk was associated with high levels of 

combined racial and economic isolation, a result that was consistent with previous studies on 

segregation.[6, 9, 20, 33, 51–53] However, much remains to be elucidated about the 

mechanisms by which segregation influences exposure to air toxics. Examining associations 

by type of emissions sources (e.g. on-road sources versus point sources), for example, will 

lead to a better understanding of the relationship between segregation and exposure to 

carcinogenic air toxics.[20]

The geographical focus of this study was St. Louis, MO–IL MSA, a major metropolitan area 

in the Midwestern United States. The results of our study are consistent with several studies 

of cancer risk stemming from southern US regions.[10, 14, 31, 32, 54] In Houston, Texas, 

cancer risk from air toxics was disproportionately concentrated in census tracts with the 

highest percentages of Hispanic residents and social disadvantage (e.g. percent of residents 

living below poverty, percent over 25 with less than high school education, and percent 

households on public assistance).[10] There were significant racial disparities in cancer risks 

in the Memphis, Tennessee metropolitan area where census tracts with higher percentages of 

African American residents displaying higher cancer risk burden than census tracts with low 

percentages of African American residents.[32] In a study of cancer risks in South Carolina, 

measures of economic deprivation and white/non-white isolation segregation were 

associated with air toxics cancer risk at the census tract level.[31] Similar associations were 

observed in a follow-up study of South Carolina with observed associations between air 

toxic cancer risk and census tract-level percentages of non-white persons, percentage of 

Hispanic persons, and percentage of residents living below poverty.[14]
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Limitations

Our analyses were cross-sectional in nature, and although we observed associations between 

sociodemographic factors and cancer risks from air toxic risk, we cannot infer causality 

from this data. Cancers are multifactorial in nature, with risk factors that include poor diet, 

lack of physical activity, obesity, and tobacco and alcohol use. The study was limited by 

census track-level analyses as we could not account for these individual-level factors and 

other exposures that may contribute to cancer risk. We evaluated associations at the census 

tract-level, and spatial clustering analyses may have failed to account for a scenario in which 

a census tract with a high cancer risk level is next to census tracts with low cancer risk 

levels. The limitations associated with the EPA’s NATA data set should also be noted. NATA 

cancer risks were estimated using EPA risk assessment models and thus, were not based on 

human cancer data. Cancer risks were modeled for only a selected number (n=180) of 

pollutants, which does not allow for a comprehensive estimates of cancer risk from all 

potential air toxics, including indoor pollutants. Finally, cancer risks were determined for 

inhalation exposures and did not take into account exposures from other routes of entry into 

the body, such as dermal absorption and ingestion.

Implications for policy and future research

Our study is an important contribution as it allowed for a better understanding of air toxic 

cancer risks throughout the St. Louis metropolitan area. Our findings have implications for 

the development of policies and interventions to reduce and eliminate sociodemographic 

disparities in exposure to carcinogenic air pollutants. In addition to identifying local areas of 

concern within the region, our results support the promotion and evaluation of (1) initiatives 

aimed at emission reductions and (2) housing policies to reduce racial and economic 

segregation. Reducing segregation may lead to a reduction in social disparities and an 

improvement in neighborhood environments, including higher property values and better-

resourced public services. These improved neighborhood environments may attract more 

affluent residents, which could lead to more public and political engagement over land-use 

policy decisions and result in the reduction the both the disparities in exposure to air toxics 

and the disparities in air toxics-related cancer risk. In our study, secondary pollutants and 

emissions on-road mobile sources were the top two contributors to cancer risk. Sample 

policies to reduce these emissions could include raising vehicle emission standards and 

promoting public transportation. Furthermore, any effort to address air toxic exposure 

disparities in this region must confront residential segregation. Mixed-income housing and 

rental vouchers are examples of policy approaches that could challenge racial and economic 

segregation in the region. Ongoing monitoring and evaluation will enable policymakers to 

make informed decisions with regard to these issues.

Hotspot analysis can be applied to subsequent investigations of ambient air quality in the St. 

Louis metropolitan area, and mixed models, accounting for spatial correlation,[55] should 

also be employed in future studies. Research priorities should include local field monitoring 

for air toxics. Local monitoring would allow for more focused source apportionment studies 

to identify and prioritize source compounds. In addition to quantifying disproportionate 

exposures, these methods could be applied to exposure assessments for future epidemiologic 

studies of air toxics and health outcomes. Future research efforts should also prioritize 
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community-engaged strategies. Key community engagement components include a mutual 

understanding of community needs and goals, community involvement at each step of the 

research process, community understanding of the strengths and limitations of air 

monitoring, and effective dissemination of research results.[56, 57] Research partnerships 

with communities can be utilized to identify and address environmental exposure disparities 

in a manner that will be meaningful to the populations who live, work, and play within air 

toxic hotspots.

CONCLUSIONS

There is an unequal distribution of cancer risk from air toxics in the St. Louis metropolitan 

area, with neighborhood characteristics such as poverty, unemployment, low educational 

attainment, and racial and economic isolation associated with increased risk. Future 

investigations are warranted to identify priority sources of hazardous air pollutants and 

inform public health efforts to eliminate sociodemographic disparities in exposure to air 

toxics.
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Highlights

• We examined lifetime cancer risk from air toxics using a spatial analysis

• Neighborhood isolation was measured using a local spatial isolation index

• Relationships between neighborhood isolation and lifetime cancer risk were 

examined

• Neighborhood racial and poverty isolation were associated with lifetime 

cancer risk
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Figure 1. 
Map of percent non-white (a), percent African American (b), and percent Hispanic (c) in the 

St. Louis metropolitan area
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Figure 2. 
Map of per capita income (a), median household income (b), percent below poverty (c), and 

percent unemployment (d) in the St. Louis metropolitan area
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Figure 3. 
Map of racial (a) and economic (b) segregation in the St. Louis metropolitan area
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Figure 4. 
Hotspot and coldspot cluster map for cancer risk in the St. Louis metropolitan area. Census 

tracts with elevated cancer risk (red) represent hotspots. Census tracts with low cancer risk 

(blue) represent coldspots.
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Figure 5. 
Zoomed-in view showing clusters for cancer risk in the St. Louis metropolitan area. Census 

tracts with elevated cancer risk at 0.01 (dark red) significance represent hotspot clusters.
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Table 1.

Lifetime Cancer Risk (persons per million) from Air Toxics by Region

Region Mean 5th Percentile 50th Percentile 95th Percentile

St. Louis Metropolitan Area (n = 615 tracts) 48.15 34.14 49.70 58.55

Missouri (n= 1391 tracts) 43.35 30.73 43.00 56.03

Illinois (n = 3115 tracts) 35.88 26.07 34.87 47.92

United States (n = 73450 tracts) 40.03 21.52 39.52 58.95
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Table 2.

Distribution of Cancer Risk by Emission Source in the St. Louis Metropolitan Area

Source Mean 5th Percentile 50th Percentile 95th Percentile

On-road 6.79 1.74 7.12 11.41

Non-road 2.39 0.71 2.35 4.33

Point 2.89 0.47 2.14 7.38

Non-point 2.24 0.91 2.12 4.12

Biogenics 3.26 2.37 3.11 4.46

Fire 0.83 0.63 0.84 1.07

Secondary 26.02 20.30 26.94 29.26

Background 3.37 3.37 3.37 3.38

Total 48.15 34.14 49.70 58.55
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Table 3.

Neighborhood characteristics of the St. Louis Metropolitan Area (n = 615 census tracts)

Mean 5th Percentile 25th Percentile 50th Percentile 75th Percentile 95th Percentile

% Non-white 26.72 1.10 3.90 10.70 36.90 98.50

% African American 22.30 0.00 0.80 5.00 29.80 97.10

% Hispanic 2.39 0.00 0.60 1.70 3.30 6.40

% Without high school education 12.88 2.40 6.50 10.90 16.80 29.80

Per capita income per $10,000 27.40 12.34 20.68 25.77 31.61 48.19

Median household income per $10,000 55.33 21.48 39.11 52.16 67.63 101.60

% Poverty 13.60 1.20 4.60 9.10 19.30 40.90

% Unemployment 5.69 1.80 3.20 4.70 7.10 13.10

Isolation measures (range 0–1)*

Racial (Black) Isolation 0.08 0.00 0.00 0.01 0.08 0.43

Economic (below poverty) Isolation 0.15 0.01 0.03 0.07 0.20 0.54

*
Isolation measures range from 0 to 1, with higher values indicating a greater proportion of that neighborhood’s (or census tract’s) population who 

are members of the same group.
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Table 5.

Racial and Economic Isolation and Cancer Risk Air Toxic Hotspots

Cancer Risk Hotspot-95% % Cancer Risk Hotspot-99% % Hotspot-95% RR Hotspot-99% RR

Isolation category

High racial and high economic 67.3 27.3 4.52 (2.40–6.03) 5.34(3.10–9.22)

High racial and low economic 52.3 25.0 3.10(2.50–3.85) 3.51 (2.33–5.29)

Low racial and high economic 40.9 34.1 2.13(1.84–2.45) 2.31(1.75–3.04)

Low racial and low economic 21.2 7.0 1.0 1.0
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